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1 Introduction

Models of electroweak symmetry breaking (EWSB) with composite Higgs bosons [1–3] have

been recently reconsidered [4–10], following the stimulus of the AdS/CFT correspondence.

In such models, the electroweak scale, ΛS ∼TeV, arises via strong-coupling effects (just as

in QCD the GeV scale arises from the QCD coupling becoming strong), while the Higgs

scalars appear as pseudo-Nambu-Goldstone bosons (PNGBs) of an approximate symmetry

that is non-linearly realized at the electroweak scale.

The presence of strong coupling means that we are powerless to compute in general

(at least in situations where the crutch of AdS/CFT is unavailable). Nevertheless, the low-

energy physics of the PNGB Higgs can be described by an effective lagrangian whose terms

are determined by symmetry considerations, allowing us to study them without detailed

knowledge of the strong sector. This situation is similar to the pions in QCD, which at

low-energies can be described by the chiral lagrangian based on the symmetry breaking

pattern SU(2)L × SU(2)R → SU(2)L+R.

In the case of models of EWSB, we have not yet made enough observations to fully

determine what the symmetry breaking structure, G → H, is. The only requirements for

the symmetry pattern in the strong sector are

(i) G must contain the SM gauge group,

(ii) the PNGBs parametrizing the coset G/H must contain a Higgs doublet, and

(iii) H must contain a custodial O(4)-symmetry to protect ∆ρ (or the T -parameter) [11]

and Z → bb [12] from sizable corrections.
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The minimal model fulfilling the properties (i)–(iii) is the SO(5)/SO(4) model [4, 5],

whose sigma model effective lagrangian contains 4 NGBs, making up a complex Higgs

SU(2)L-doublet. The SO(5) symmetry is broken by couplings to SM gauge bosons and

fermions, such that these NGBs become PNGBs, getting a potential at the loop-level

and driving EWSB. The measured value of the S-parameter is the only nuisance, but it

appears that this too can be accommodated if one is willing to accept a tuning in the model

parameters at a level of no more than one part in ten [4, 5].

Given that the SO(5)/SO(4) model provides a reasonable explanation of existing data,

is there any reason to explore less minimal models with an enlarged Higgs sector? One

motivation is that, as stressed above, we do not yet know what the symmetry structure is.

The LHC will hopefully settle this question, but in order that it may do so, we need to be

able to identify the different LHC signatures of models with different symmetry structures.

As we shall see, in less minimal models the phenomenology can be dramatically changed,

with implications for Higgs physics, flavour physics, and CP . In particular, a new Higgs

decay channel can allow the lower bound of 114 GeV on the value of the SM Higgs mass to

be evaded, and can accommodate a lighter Higgs, as preferred in composite scenarios.

Another motivation is that, as we will learn in section 3, in less minimal models with

a different symmetry structure, we have the possibility of non-trivial physics associated

with quantum anomalies of the symmetry. Since the anomaly is non-renormalized, the

coefficients of these operators are completely fixed, up to integers that measure the fermion

content of the high-energy theory. If we were able to measure these integers at the LHC or

a future collider, we would be able to obtain quantitative information about the ultra-violet

(UV) theory, similarly to the way in which the decay π0 → γγ allowed us to extract the

number of colours in QCD.

In this Article, we explore these issues in one of the simplest extensions of the minimal

composite Higgs model, the model based on the coset SO(6)/SO(5).1 The model contains

15 − 10 = 5 NGBs, comprising a SM Higgs doublet and an electroweak singlet η. The

presence of η can lead to interesting and varied implications for phenomenology that, as

we will see, crucially depend on the embedding of the SM fermions into representations of

the global SO(6). We will see that these embeddings can preserve the symmetry associated

with shifts of the NGB η, and protect the η mass from SM loop corrections. In particular,

we will present a scenario in which the gauge and the top contributions to the η mass

are zero, and therefore η can be naturally light, . 30 GeV, getting its mass from bottom

or tau loops. This opens up the possibility of decays of the SM Higgs into the singlet,

invalidating the LEP bound on the Higgs mass. The dominant decay channel of η can be

bb̄, τ τ̄ or cc̄, depending on the corresponding embeddings into SO(6) of the remaining SM

fermions. If the embeddings are different for different family members, we will show that

the η can mediate flavour-changing neutral currents (FCNC) and have flavour-violating

decays. Furthermore, the model incorporates extra sources of CP -violation, with important

implications in the Higgs sector. Since the group SO(6) is isomorphic to SU(4), the model

can have an anomaly, and correspondingly a Wess-Zumino-Witten (WZW) term. This

1This coset was previously explored in the context of little Higgs models in ref. [13], and also in ref. [14].
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term generates a coupling between η and two SM gauge bosons, and could be measured by

detecting the decay channel η → γγ.

We will also explore models based on the SO(6)/SO(4) coset containing two Higgs dou-

blets. Nevertheless, we will show that in these models the custodial symmetry is generically

broken, implying that contributions to the T -parameter are large.

The layout is as follows. In section 2 we introduce the SO(6)/SO(5) model, describing

how the SM fields are coupled to the Higgs. This allows us to determine the form of

the Higgs potential, and discuss the resulting phenomenology. In section 3 we provide

a discussion of anomalies and the WZW term in models based on general cosets. We

give a necessary condition for a WZW term to arise, and show that this is fulfilled in

the SO(6)/SO(5) model. We conclude in section 4. In appendix A, we consider a similar

model based on SO(6)/SO(4) and show that it generically does not preserve the custodial

symmetry. Appendix B discusses C and P in the Higgs sector of the SO(6)/SO(5) model,

in the presence of a WZW term.

2 The SO(6)/SO(5) composite Higgs model

In the case that the global symmetry breaking of the strong sector is SO(6) ∼= SU(4) →
SO(5) ∼= Sp(4) the model will contain five NGBs, transforming as a 5 of SO(5), which

corresponds to a 1 ⊕ 4 ≡ (1,1) ⊕ (2,2) under the subgroup SO(4) ∼= SU(2)L × SU(2)R.

The bi-doublet can be associated to the usual SM Higgs doublet H responsible for EWSB,

while the singlet, which we denote by η, corresponds to an extra pseudoscalar state. The

breaking of SU(4) down to Sp(4) can be achieved by a 4 × 4 antisymmetric matrix

Σ0 =

(

iσ2 0

0 iσ2

)

, (2.1)

corresponding to the vacuum expectation value (VEV) of a field Σ transforming as the 6

of SU(4):

Σ → UΣUT . (2.2)

The unbroken generators T a satisfy

T aΣ0 + Σ0T
aT = 0 , (2.3)

and correspond to the generators of Sp(4), while the broken ones, T â, satisfy

T âΣ0 − Σ0T
âT = 0 . (2.4)

Among the ten unbroken generators we identify six corresponding to the subgroup SU(2)L×
SU(2)R as

T a
L =

1

2

(

σa 0

0 0

)

, T a
R =

1

2

(

0 0

0 σa

)

, (2.5)
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while the remaining four can be taken to be

1

2
√

2

(

0 σa

σa 0

)

and
1

2
√

2

(

0 −i1

+i1 0

)

. (2.6)

The fluctuations along the broken directions correspond to the NGBs, which parametrize

the SU(4)/Sp(4) coset

Σ = e
i√
2
Π/f

Σ0 , (2.7)

where

Π =

(

η1 −i(Hc H)

i(Hc H)† −η1

)

, (2.8)

with H =

(

h3 + ih4

h1 + ih2

)

and Hc = iσ2H
∗. This can be written as

Σ =









(

c + i ηs√
η2+h2

)

iσ2
s√

η2+h2
(−H Hc)

− s√
η2+h2

(−H Hc)T
(

c − i ηs√
η2+h2

)

iσ2









, (2.9)

where

s = sin

√

η2 + h2

√
2f

, c = cos

√

η2 + h2

√
2f

, and h =
√

h2
i . (2.10)

By a suitable SU(2)L rotation, we can eliminate 3 NGBs (they are eaten by the SM gauge

bosons), and keep only the physical Higgs, h, and η. In this gauge, the kinetic term for

the PNGBs is given by

f2

8
Tr|DµΣ|2 =

f2

2
(∂µh)2 +

f2

2
(∂µη)2 +

f2

2

(h∂µh + η∂µη)2

1 − h2 − η2

+
g2f2

4
h2

[

W µ+W−
µ +

1

2 cos2 θW
ZµZµ

]

, (2.11)

where we have performed the following redefinition of the PNGB fields:

h2s2

η2 + h2
→ h2 ,

η2s2

η2 + h2
→ η2 . (2.12)

Field choices related by re-definitions of this type are equally valid inasmuch as the sigma-

model itself is concerned [15], but, as is clear from eq. (2.11), the redefined h is the one whose

VEV sets the scale of EWSB. From now on, h and η will always refer to the redefined fields.

The gauging of the SM group breaks the global symmetry 2 SU(4) down to SU(2)L ×
U(1)Y × U(1)η , where Y = T 3

R and U(1)η is generated by

T η =
1

2
√

2
Diag(1, 1,−1,−1) . (2.13)

Since this latter is the symmetry under which the PNGB η shifts, gauge boson loops will

generate a potential for h, but not for η.

2In general, gauging a subgroup K of a global symmetry breaks the global symmetry down to the largest

subgroup that contains K as an ideal.
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2.1 Couplings to SM fermions

We now consider the couplings of the strong sector to the SM fermions. As in ref. [4], we

will assume that the SM fermions couple linearly to a single operator of the strong sector

(or, equivalently, to a resonance of the strong sector); these mixings will be the origin of

the fermion masses. For this purpose, we need to enlarge the global group of the strong

sector to include the colour group SU(3)c, and an extra U(1)X , which allows us to properly

embed the hypercharges, as Y = T 3
R + X. This extra U(1)X will not be spontaneously

broken, and therefore its inclusion does not affect the results of the previous section. The

PNGB fields have vanishing X-charge.

Choosing the quantum numbers of the operators in the strong sector, to which the

SM fermions are coupled, is equivalent to choosing an embedding for the SM fermions

into representations of the global SU(4) × U(1)X . Since it is not possible to embed the

SM fermions into complete representations, the couplings between the SM fermions and

the strong sector will, in general, break the global symmetries. We will, however, de-

mand that these couplings preserve the custodial symmetry that protects Zbb̄ from large

corrections [12]. This means that the quark doublet must be embedded in a (2,2)2/3 of

SU(2)L ×SU(2)R ×U(1)X . Let us now consider, in turn, the three smallest representations

of SU(4), namely the 4, the 10 and the 6.3

The 4 decomposes as (2,1) ⊕ (1,2) under SU(2)L × SU(2)R, and therefore can be

discarded since it does not contain a (2,2).

The 10, a symmetric tensor of SU(4), decomposes into (2,2) ⊕ (3,1) ⊕ (1,3) under

SU(2)L × SU(2)R. We can embed the SM quark doublet, qL, into the (2,2), while the

quark singlets, uR and dR, can go into the (1,3):

Ψq =
1√
2

(

0 Q

QT 0

)

, Ψu =

(

0 0

0 U

)

, Ψd =

(

0 0

0 D

)

, (2.14)

where

Q =
(

0 qL

)

, U =

(

0 uR

uR 0

)

, D =

(

dR 0

0 0

)

. (2.15)

The X-charge assignments are the following: Xq = 2/3, which, as discussed above, guar-

antees that the custodial symmetry protects Zbb̄, and Xu = Xd = 2/3, in order to allow

a Yukawa coupling with Σ. We notice, however, that this embedding does not break the

global U(1)η symmetry of eq. (2.13), since qL, uR and dR have a well-defined transformation

among themselves. Indeed, under U(1)η , we find

δΨi = T ηΨi + ΨiT
η T , (2.16)

whence

δqL = 0 , δuR = − 1√
2
uR , δdR = − 1√

2
dR . (2.17)

3Similar considerations apply to the conjugate 4 and 10 representations.
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That is to say, the SM fermions have well-defined charges under U(1)η . Thus, there is

a remnant U(1)η symmetry that is broken neither by gauge nor by Yukawa interactions.

What is more, if this U(1)η is assumed to be anomalous in the background of QCD, it

will be a bona fide Peccei-Quinn symmetry, solving the strong CP problem. The η will

correspond to the axion, and will obtain a mass of order mπfπ/f via mixing with pions.

Unfortunately, we know that an electroweak-scale axion of this type has been essentially

excluded, by searches for K+ → π+η, irrespectively of its model-dependent couplings to

fermions and gauge bosons [16]. We therefore discard the 10 as well.

This leaves us with the last possibility, namely embedding the SM fermions in the

6-dimensional representation of SU(4), carried by antisymmetric 4 × 4 matrices (this is

the vector representation of SO(6)). Under SU(2)L × SU(2)R, this representation decom-

poses as (2,2) ⊕ (1,1) ⊕ (1,1); the SM qL must go into the bi-doublet, while uR and dR

each go into some linear combination of the two singlets. For the up-quark sector, we

have the embedding

Ψq =
1

2

(

0 Q

−QT 0

)

, Ψu = Ψ+
u + ǫuΨ−

u , Ψ±
u =

1

2

(

±U 0

0 U

)

, (2.18)

where Q = (0, qL), U = uRiσ2, and the complex parameter ǫu defines the embedding of the

u-quark into the two singlets. As in the case of the 10, the X-charges are Xq = +2/3 = Xu.

For the down-sector, we are forced to embed the quark doublet into a second 6-plet, Ψq′ ,

with Xq′ = −1/3. This is necessary in order to generate non-zero down-type masses,

since the multiplet containing the d-quark, Ψd, must have Xd = −1/3 to give the correct

hypercharge to dR. The embeddings are then given by

Ψq′ =
1

2

(

0 Q′

−Q′T 0

)

, Ψd = Ψ+
d + ǫdΨ

−
d , Ψ±

d =
1

2

(

±D 0

0 D

)

, (2.19)

where now Q′ = (qL, 0) and D = dRiσ2. The fact that the qL-doublet arises from a multiplet

with X = −1/3 implies that the custodial symmetry cannot guarantee protection of the Zbb̄

coupling. Nevertheless, this multiplet can be assumed to be coupled to the strong sector

with a small coupling ∝ √
mb, assuring the generation of the bottom mass without substan-

tially affecting the Zbb̄ coupling. From eqs. (2.18) and (2.19) we observe that in the special

case ǫi = ±1 (i = u, d), the SM quarks have definite charges under the U(1)η [eq. (2.16)]:

δqL = 0 , δuR = ∓ 1√
2
uR , δdR = ∓ 1√

2
dR . (2.20)

Therefore we expect to find a massless η in the limit ǫi → ±1.

2.2 One-loop effective potential

At the one-loop level, a potential for the PNGBs is generated due to the SU(4)-breaking

terms arising from the SM couplings to the strong sector. This potential depends on

the dynamics of the strong sector, which is in general unknown. Nevertheless, symmetry

considerations are powerful enough to tell us the functional form of the potential, and to

– 6 –



J
H
E
P
0
4
(
2
0
0
9
)
0
7
0

determine whether h and η can or cannot get a non-zero VEV, as well as the size of their

masses. To obtain the functional form of the one-loop effective potential, we proceed in

two steps. First, we write the lagrangian for the SM fields obtained by integrating out the

strong sector in the background of Σ. Second, we give the one-loop potential generated by

integrating over the SM fields.

Using the invariance under the global SU(4) × U(1)X , we can write the effective la-

grangian for the SM gauge bosons at the quadratic level, obtained by integrating out the

strong sector, as

Lg =
1

2
Pµν

(

ΠB
0 BµBν + Π0 Tr [AµAν ] + Π1 Tr

[

(AµΣ + ΣAT
µ )(AνΣ + ΣAT

ν )†
] )

, (2.21)

where Bµ is the U(1)Y gauge field and Aµ = Aa
µT a

L +BµT 3
R where Aa

µ are the gauge fields of

SU(2)L. The lagrangian is given in momentum-space and the Πi are momentum-dependent

form factors whose values depend on the strong dynamics. In extra dimensional models

these quantities can be explicitly calculated [4]. We have also defined Pµν = ηµν −pµpν/p2,

where p is the momentum of the gauge fields. Using eqs. (2.9) and (2.12), and the explicit

expression for the SU(2)L generators, we have

Lg =
1

2
Pµν

[(

ΠB
0 +

Π0

2
+ Π1h

2

)

BµBν +

(

Π0

2
+ Π1h

2

)

Aa
µAa

ν − 2Π1h
2A3

µBν

]

. (2.22)

Similarly, for the SM quarks, the most general SU(4)×U(1)X -invariant lagrangian obtained

after integrating out the strong sector is given, at the quadratic order, by 4

Lf =
∑

r=q,u,q′,d

[

Πr
0 Tr[Ψ̄r 6p Ψr] + Πr

1 Tr[Ψ̄rΣ] 6p Tr[ΨrΣ
†]
]

+Mu
1 Tr[Ψ̄qΣ]Tr[ΨuΣ†] + Md

1 Tr[Ψ̄q′Σ]Tr[ΨdΣ
†] + h.c. , (2.23)

where we have

Tr[Ψ̄qΣ] 6p Tr[ΨqΣ
†] = ūL 6puL h2 ,

Tr[Ψ̄q′Σ] 6p Tr[Ψq′Σ
†] = d̄L 6pdL h2 ,

Tr[Ψ̄uΣ] 6p Tr[ΨuΣ†] = 4ūR 6puR

∣

∣

∣

√

1 − η2 − h2 + iǫuη
∣

∣

∣

2

,

Tr[Ψ̄dΣ] 6p Tr[ΨdΣ
†] = 4d̄R 6pdR

∣

∣

∣

√

1 − η2 − h2 + iǫdη
∣

∣

∣

2

,

Tr[Ψ̄qΣ]Tr[ΨuΣ†] = 2ūLuR h
[

√

1 − η2 − h2 + iǫuη
]

,

Tr[Ψ̄q′Σ]Tr[ΨdΣ
†] = −2d̄LdR h

[

√

1 − η2 − h2 + iǫdη
]

. (2.24)

The last two terms of eq. (2.23) give rise to the quark masses, so we must require that at zero

momentum Mu,d
1 ∼ mu,d. This can be achieved by requiring that the SM fermion fi couples

4We have used the fact that Tr[Ψ̄qΨu] = Tr[Ψ̄q′Ψd] = 0 when projected to the SM field content,

eqs. (2.18) and (2.19).
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to the strong sector with a strength ∝ √
mfi

where mfi
is the fermion mass.5 This implies

Πq
1,M

u
1 ∝ mu , Πq′

1 ,Md
1 ∝ md . (2.25)

A similar lagrangian is obtained for the SM leptons.

Now, by integrating out the SM fields, we can get the effective potential for the PNGBs.

This is expected to be dominated by one-loop effects arising from the SU(2)L gauge bosons

and, due to eq. (2.25), 3rd family quarks. We find

V (h, η) =
9

2

∫

d4p

(2π)4
log ΠW

−(2Nc)

∫

d4p

(2π)4
[

log ΠbL
+ log (p2ΠtLΠtR − |ΠtLtR |2)

]

, (2.26)

where the gauge and top propagators arise respectively from eqs. (2.22) and (2.23) with

u → t:

ΠW =
Π0

2
+Π1h

2, ΠtL =
Πq

0+Πq′

0

2
−Πq

1h
2 , ΠbL

=
Πq

0+Πq′

0

2
−Πq′

1 h2,

ΠtR =Πt
0−Πt

14
∣

∣

∣

√

1−η2−h2+iǫtη
∣

∣

∣

2

, |ΠtLtR |2 = |M t
1|24h2

∣

∣

∣

√

1−η2 − h2+iǫtη
∣

∣

∣

2

. (2.27)

The functions Π1 and M1 characterize the effects of the spontaneous SU(4)-breaking in the

strong sector, and therefore must decrease for momentum p above the scale of the strong

sector ΛS . This allows for an expansion of the logarithms in the potential that leads to an

approximate formula for the potential:

V (h, η) ≃ αh2 + λh4 + |φ|2
[

β + γh2 + δ|φ|2
]

, φ ≡
√

1 − η2 − h2 + iǫtη , (2.28)

where α, λ, β, γ, and δ are constants that depend on integrals over the form factors. In the

limit ǫt → ±1 in which the η becomes a true NGB, we have

|φ|2 → (1 − h2), (2.29)

and therefore the potential eq. (2.28) becomes η-independent. In this limit, the potential

for η may be sensitive to other one-loop effects, coming from the light SM fermions. This

will be the case for SM fermions fi whose embedding parameters ǫi take values different

from ±1. We shall explore this possibility further later on.

We will be interested in cases in which h gets a VEV and breaks the electroweak

symmetry, with η either getting a VEV, or not getting a VEV. Both of these situations

can occur, for suitable values of the parameters. For example, for complex values of ǫt, η

gets always a VEV since the term |φ|2 contains a tadpole for η. Notice that, due to the

re-definition eq. (2.12), the VEVs of the PNGBs must be restricted to

〈h2〉 + 〈η2〉 ≤ 1 . (2.30)

5We are assuming that for a given SM fermion the left-handed and right-handed components have

similar couplings to the strong sector. This guarantees that all FCNC processes from the strong sector are

suppressed (for a recent analysis see refs. [17, 18]). Relaxing this assumption can lead to large FCNC effects.
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For ǫi ∈ R and 〈η〉 = 0, the Higgs h can be defined as a CP -even scalar, while η is CP -

odd, as can be deduced from their couplings to fermions in eq. (2.24). This assignment is

consistent with the other NGB interactions, as explained in appendix B. Even if ǫi ∈ R,

we can have 〈η〉 6= 0, and then CP is spontaneously broken. We must be aware, however,

that the effects of a nonzero VEV for η vanish in the limit ǫi → ±1, since the η becomes

a true NGB and therefore its VEV is unphysical. When ǫi /∈ R, CP is explicitly broken

in the η interactions to fermions eq. (2.24). In this case we always have, as we explained

above, that 〈η〉 6= 0, and CP is in fact broken in all Higgs interactions.

2.3 Higgs phenomenology

The Higgs physics in this model strongly depends on the values of ǫi which, without knowl-

edge of the underlying strong sector, must be taken as free parameters. Two important

values for these parameters are

ǫi = ±1 =⇒ No potential is generated for η from loops of the fermion fi ,

ǫi = 0 =⇒ Zero ηfif̄i coupling . (2.31)

In the following, we discuss different possibilities for ǫi and the phenomenological impli-

cations in Higgs physics. We first consider the case in which ǫi are family universal, and

consider later the FCNC implications when this is not the case.

Heavy-η scenario. If the value of ǫt is different from ±1, then we have a scenario in

which η gets a potential from top-loops. In this case, we have two physical Higgs states,

h and η, with masses around 100 − 200 GeV. If 〈η〉 = 0 (ǫi ∈ R), we have, up to effects

of order 〈h2〉, that h behaves as the SM Higgs. The η is a CP -odd state, and couples to

fermions, via eq. (2.24), with a strength

gηfifi
= mfi

ǫi
√

1 − 〈h2〉
. (2.32)

An important difference between η and h is the absence of a tree-level coupling of η to

WW and ZZ, cf. eq. (2.11). By measuring, at the LHC, the different products σ × BR,

where σ represent the different production rates (either through gluon, gauge-boson fusion,

or top-strahlung), and BR the possible branching ratios (decays into b, τ , γ and (virtual)

weak gauge bosons), we can assure the discovery of the two Higgs states. Nevertheless, even

if these can be measured, the difficult task will be to disentangle this scenario from others,

e.g., supersymmetric models. This could be possible if we were able to obtain a precise

determination at the LHC of the different values of the products σ×BR that, as explained

in ref. [19], suffice to establish the composite nature of the Higgs. Another option would be

to try to distinguish η from, for example, the CP -odd scalar A0 of the MSSM. The main

difference among the two arises in their coupling to hZ, which is present for A0, but absent

for η. If we can establish the presence of this coupling at the LHC, either from the decay

of the CP -odd state to the CP -even one (or vice versa), or from the double production of

the CP -odd and CP -even states, this will definitely rule out the scenario considered here.
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For the case in which 〈η〉 6= 0, the two Higgs states mix with each other and we end

up in a scenario of two Higgs states with very similar phenomenology. The important

implication in this case is that CP is violated in the Higgs sector. Nevertheless, to observe

this we must rely on the decay of the Higgs to WW/ZZ, if kinematically possible, or to τ τ̄ ,

whose branching fraction is very small. These are the only two decay channels that allow

a full analysis of the angular distribution of the decay products and a determination of the

CP -properties of the Higgs [20]. Another suggestion is to use the angular correlations of

the tagging jets in vector boson fusion production of the Higgs [21].

Light-η scenario. In the limit in which all ǫi → ±1, the η mass goes to zero, and we are

driven to a very different scenario for Higgs physics. The mass of η can be below mh/2,

implying that the Higgs h can decay to ηη. From eq. (2.11) we find a hηη coupling 6

− f2〈h〉
2

η2∂2
µh , (2.33)

which leads to a Higgs partial width

Γ(h → ηη) =
m3

hm2
W β

8πg2f4
, β =

√

1 − 4m2
η/m

2
h . (2.34)

This decay channel can dominate over the bb̄ channel. In the limit of mη ≪ mh, we find

Γ(h → ηη)

Γ(h → bb̄)
≃ 8.5

( mh

120 GeV

)2(500 GeV

f

)4

. (2.35)

This opens up the possibility that the Higgs could in fact be somewhat lighter than the LEP

SM Higgs bound of 114 GeV, since h might have escaped detection at LEP due to the non-

standard decay mode h → ηη [22, 23]. For example, if mh ≫ mη & 10GeV, the dominant

decay mode of η is η → bb̄ and the experimental lower bound on mh from h → 4b searches

is around 110 GeV. This bound can even go down to 86 GeV for 10GeV & mη & 3.5GeV,

where the dominant decay mode is η → τ τ̄ [24].

Although technically natural, there is, a priori, no reason to believe that all ǫi should

be close to ±1, but not exactly ±1 (otherwise η is a PQ-axion), and therefore one might

think that the light-η scenario is not very well motivated. Nevertheless, it is perhaps

reasonable to consider that the values of ǫi for the up-type quarks, ǫu, are different from

those of the down-type quark, ǫd, or even from those of the leptons, ǫl, and, furthermore,

that one or more of these are ±1. In this case we can find natural scenarios in which η is

light. For example, if we assume ǫu = ±1 and ǫd 6= ±1, we have that η receives its mass

predominantly from a bR loop, giving

m2
η ∼ mbΛ

3
S

16π2〈h〉f ≃ (30GeV)2
(

ΛS

2TeV

)3(500GeV

f

)

, (2.36)

that is light enough to allow the decay of h to two η. The η will mainly decay to bb̄, unless

ǫd = 0. In this latter case, we have that η does not couple to bb̄ and decays instead to τ τ̄ .

This decay channel can also be zero if ǫl = 0, implying that η will mostly decay to cc̄.

6There is also a coupling in the potential eq. (2.28), but it vanishes as ǫi → ±1.
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Another possibility is to have ǫu = ǫd = ±1 but ǫl 6= ±1. Then the mass of η comes

from loops of τ (similar to eq. (2.36), but with mb → mτ ), leading to a slightly lighter η.

In this case, it could be kinematically forbidden for η to decay into bb̄, its principal decay

mode then being into either cc̄ or τ τ̄ , depending on whether ǫl = 0 or not.

FCNC. Let us now consider the case in which the values of ǫi are not family symmetric.

We expect FCNC effects mediated at tree-level by η, which couples linearly to f̄ i
Lf j

R with

a strength (assuming 〈η〉 = 0 and 〈h〉 ≪ 1)

Mij = mfi

∑

k

UR ik ǫk U †
R kj , (2.37)

where UR is the rotation in the right-handed sector needed to diagonalize the fermion mass

matrices and i, j, k runs over all fermions. Since UR is unitary, URU †
R = 1, we have that,

as expected, M is diagonal for universal values of ǫi. We will assume that UR is of the

same order as the CKM matrix V and study the implications of non-universality of ǫi on

flavour observables.

In the down-sector, the strongest constraints on FCNC arise from ∆mK/mK and εK .

At tree-level, we have that η gives a contribution to ∆mK/mK given by

∆mK

mK
=

Re[M2
sd]

2m2
ηf

2mK
〈K|(s̄LdR)2|K̄〉 , (2.38)

where Msd ≃ ms{VusVud[ǫs − ǫd]}. We find ∆mK/mK ∼ 10−15(100 GeV/mη)
2, which is

below the experimental bound, ∆mK/mK . 7 · 10−15, for mη & 40 GeV. The bound from

εK can increase the bound on the η mass by a factor of 10, but this depends on the phases

of ǫi and UR; the constraints from ∆mB/mB are found to be weaker. Similarly, for the up

sector, non-universal values for ǫi lead to contributions to ∆mD/mD. We find that these are

of order 10−13, and then close to the experimental value, for mη ∼ 100 GeV. Finally, in the

lepton sector, η can induce contributions to, for example, τ → 3µ, but these are very small

and only reach the experimental bound BR(τ → 3µ) . 2 · 10−7 for η weighing a few GeV.

An interesting consequence of having non-universal values for ǫi is that η can have

family-violating decays with a width given by

Γ(η → f̄ifj) =
Nc|Mij |2mηβ

4

8πf2
, β =

√

1 − m2
i /m

2
η , (2.39)

where Nc = 3 for quarks and Nc = 1 for leptons, and we have assumed mi ≫ mj. If

kinematically allowed, the decay channel η → tc̄ can be the dominant one. Indeed, we find

Γ(η → tc̄)

Γ(η → bb̄)
∼ |Mtc|2

|Mbb|2
∼ m2

t V
2
ts

m2
b

∼ 4 . (2.40)

For a lighter η, the decay channel η → bs̄ could dominate over the bb̄ channel if ǫb = 0,

since in this case one finds Γ(η → bs̄)/Γ(η → bb̄) ∼ |Mbs|2/|Mbb|2 ∼ V −2
bc ≫ 1.
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3 Anomalies, the Wess-Zumino-Witten term and CP

Yet another interesting aspect of the phenomenology of models based on the coset

SO(6)/SO(5) is that they admit a Wess-Zumino-Witten (WZW) term in their effective

lagrangian. As we shall see in more detail below, such terms are interesting for at least

three reasons. First and foremost, the WZW term is the low-energy manifestation of the

anomaly structure of the UV theory (just as the axial anomaly of the chiral lagrangian in

hadronic physics is fixed by the quark content of QCD). Since it is non-renormalized, it

opens a low-energy window onto UV physics: If it is present in a strongly-coupled theory

of EWSB, and if it is observable at the LHC or a future collider, it would offer a unique

opportunity to learn about the UV completion of the theory that controls the weak scale.

Second, the WZW term gives the leading order correction to the two-derivative sigma model

lagrangian, and, third, it plays an important rôle in the context of discrete symmetries, in

particular CP .

Before discussing all this in more detail, let us first discuss, in general terms, the

conditions for a WZW term to be present in a model of EWSB. For a sigma model based

on the coset G/H, there are non-trivial conditions for a WZW term to be present even

when the group G is not gauged. The condition [25] is that a WZW term, corresponding

to an anomalous rep. of G, can be included only if the anomaly, restricted to the subgroup

H, is cancelled by the H anomaly of massless fermions present in the low-energy effective

theory. To see why the anomaly must match in this way, we note that the sigma model has

a local H symmetry, corresponding to a compensating transformation that maintains the

parametrization of the coset G/H; it is local because the coset parametrization is written

in terms of the spacetime-dependent NGB fields. To maintain the Ward identities, which,

in particular, guarantee that NGBs are massless, H must be anomaly free.

If we wish to go further and gauge all of G, then the H-anomaly of light fermions

must itself vanish [26]. If it does not, then by sandwiching together two triangle diagrams

involving the light fermions and three H gauge bosons, we can generate masses for the

H gauge bosons, and these cannot be cancelled by diagrams involving a WZW term and

NGBs. Then the argument of the previous paragraph tells us that the H-anomaly of any

WZW term must vanish.

For theories of EWSB, we do not gauge all of G, but only some subgroup K, which

intersects non-trivially with the unbroken group H. As a result, the surviving massless

gauge fields belong not to K or H, but rather to some smaller subgroup J that is common

to both K and H. In this general case, we can only apply the logic of the previous

argument to the group J .

So in summary, a necessary condition for a WZW term is that G admits anoma-

lous representations whose anomalies vanish when construed as anomalies of the surviving

linearly-realized gauge symmetry J ⊂ H,K.

Now let us consider the implications for some specific examples. A Higgsless model with

coset structure SU(2)L × U(1)Y /U(1)Q satisfies the condition for a WZW term. Indeed,

a suitable anomalous rep. of G is (2,−1
2

√

1
2
) ⊕ (1,

√

1
2
). For a model with a Higgs and

a WZW term, one may consider the coset SU(3) × U(1)X/SU(2)L × U(1)Y of ref. [27].
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However, the SO(5)/SO(4) model with a Higgs and custodial symmetry does not admit a

WZW term, the reason being that SO(5) does not have anomalous representations.7

For an example which incorporates custodial symmetry and can have a WZW term,

we need to look no further than the model based on SO(6)/SO(5) that we discussed in the

previous section. Since SO(6) is locally isomorphic to SU(4), it has anomalous representa-

tions. Other examples are cosets based on SO(6)/SO(4), which we discuss in appendix A,

and models based on SU(4) × SU(4)/SU(4).

These results are confirmed by consideration of the effective lagrangian. The full form

of the WZW term is somewhat complicated, involving an infinite series of terms in the

PNGBs; derivations in the context of holographic Higgs models are given in ref. [28] and in

the context of little Higgs models in ref. [29] (some phenomenological aspects of anomalies

in little Higgs models were discussed in ref. [30]). Nevertheless, at leading order in 1/f ,

the WZW term gives a coupling of a PNGB to two gauge bosons via the epsilon tensor.

In a Higgsless model, for example, the effective lagrangian should respect the U(1)Q of

electromagnetism, and indeed we can couple the charge neutral PNGB that is eaten by

the Z to the electromagnetic field combination FF̃ . By contrast, the effective lagrangian

in a model with a Higgs should respect the full SU(2)L × U(1)Y ; no operator with a

single PNGB and two gauge bosons is available in a theory with just a SM Higgs (like the

SO(5)/SO(4) model), but once we add a singlet (for example in an SO(6)/SO(5) or SU(3)×
U(1)X/SU(2)L × U(1)Y model), we can write down a gauge-invariant term of the form

L ⊂ η

16π2
(nBBµνB̃

µν + nW Wa µνW̃
a µν + nGGA µνG̃

A µν). (3.1)

Here, GA µν , Wa µν and Bµν refer to the field strengths of the SU(3)c×SU(2)L×U(1)Y gauge

group, and B̃µν = ǫµνρσBρσ/2 and similarly for the other fields. The nG,W,B are integers

that measure the strengths of the various anomalies and are fixed by the fermion content

of the UV physics. If we were able to measure these integers at the LHC, then we would

gain quantitative information about the UV physics, just as measurement of the decay rate

π0 → 2γ in hadronic physics tells us that the number of colours in QCD is three. Note

that for the SO(6)/SO(5) model, the WZW terms all come from an SU(4)3 anomaly, such

that nG = 0 and nW = nB. However, the SM fermions also give contributions to the terms

in eq. (3.1). Indeed, we find, in the approximation mfi
≫ mη: δnB = NcY

2
i Re[ǫi], δnW =

NcRe[ǫi] for weak doublets, and δnG = Re[ǫi] for quarks. Since the relevant couplings do

not respect the G symmetry, the shifts in the coefficients are not restricted to integers.

But can we measure these coefficients at the LHC, or if not, at a future collider? If

we cannot measure the coefficients themselves, can we even detect the presence of these

terms? We might hope to be able to produce the η directly at the LHC via WW fusion

and the ηWW̃ vertex, or via gluon fusion if an ηGG̃ vertex is present. Alternatively, and

similar to the neutral pion in QCD, we could measure the coefficients by detecting the

decay of η to photons. We find

Γ(η → γγ)

Γ(η → bb̄)
≃ 0.007

∣

∣

∣

nγ

5

∣

∣

∣

2( mη

100 GeV

)2
∣

∣

∣

∣

1

ǫb

∣

∣

∣

∣

2

, (3.2)

7Identical conclusions were reached from a different direction in ref. [28].
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where nγ = nB + nW . Although this partial width is small, it is larger, for nγ ∼ 5, than

the SM decay Γ(h → γγ) which has been shown to be visible at the LHC. Furthermore, the

branching ratio of η to photons can be enhanced if, as we explained in the previous section,

the η cannot decay to bb̄. We must however stress that even if we are able to observe the

decay channel to photons, at the LHC we can only measure the product of the cross section

and the branching ratio, not the partial width. So we cannot extract the strength of the

anomaly directly, without further information. A final possibility is that once we include

the higher mass resonances in the effective theory, we expect that they too will couple via

the anomaly (an extra-dimensional example was recently discussed in ref. [31]), giving us

another potential experimental window on the couplings.

Let us lastly discuss the connection between the WZW term and discrete symmetries,

in particular CP . Discrete symmetries were, of course, the very reason for the introduc-

tion of the WZW term in the chiral lagrangian of QCD, at least in Witten’s incarnation

thereof [32]. To recall, the leading order (two-derivative) chiral lagrangian, Tr(∂eiπ∂e−iπ) is

invariant under the näıve parity, P0 : x → −x, as well as the NGB parity, PNGB : π → −π,

and charge conjugation, C : π → πT . However, of the first two, only the true parity

P = P0PNGB is a symmetry of QCD, and the WZW term is the leading order term in

the chiral lagrangian that violates P0 and PNGB individually, while respecting P . In ap-

pendix B we show that analogous arguments go through for the EWSB model based on the

coset SO(6)/SO(5): The lagrangian for the gauge and Higgs self-interactions, including the

WZW term, respects CP if h and η are defined to be CP -even and CP -odd respectively.

4 Outlook

We have explored a composite Higgs model based on the coset SO(6)/SO(5), with SM

fermions assigned to the 6 of SO(6). Just like the minimal composite model based on

SO(5)/SO(4), the model features custodial protection of the T -parameter and Z → bb, and

therefore is in agreement with EWPT if a mild tuning of v/f is accepted to accommodate

the S-parameter.8 The model contains an extra singlet scalar, η, compared to the Higgs

sector of the SM, which can dramatically change the phenomenology. This strongly depends

on the values of ǫi that, as can be seen from eq. (2.31), determines the properties of η. In

particular, we have presented scenarios in which the SM Higgs can predominantly decay

into 2η, which in turn can dominantly decay into any one of bb, ττ , or cc. As a result, the

direct bound on the SM Higgs mass coming from LEP can be invalidated, and the true

bound may in fact be as low as 86 GeV. The couplings of the singlet to SM fermions can also

give rise to tree-level FCNCs that are close to the experimental bounds (or even exceeding

it in the case of εK), and induce flavour-violating decays for η. The model can also exhibit

explicit or spontaneous CP violation, though it will be difficult to test experimentally.

One of the most interesting phenomenological aspects of the model is the coupling of η to

gauge bosons, which is induced not only by SM loops, but also can be present if the model

has anomalies. Therefore the process η → γγ will be of crucial importance to unravel the

underlying structure of the model.

8In this model the contribution to S is similar to that in the minimal composite Higgs model [4].
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At the LHC the most prominent way to produce the η is either through the decay

of the Higgs gg → h → ηη, if kinematically allowed, or from gluon fusion gg → η.

Nevertheless, η can also be produced in the decay of a heavy fermionic resonance of the

strong sector. Its detection is, however, difficult. The most promising decay channel is

η → γγ, which we expect to have a partial width larger than that of the corresponding

SM Higgs decay. The phenomenological prospect at the LHC and other future colliders

need, however, to be fully explored.

The model presented here can also have interesting implications for astrophysics. For

example, if ǫi = 0 for all SM fermions and there are no anomalies, the singlet is stable,

and hence can be a dark matter candidate. The singlet can annihilate through the h2η2

interactions of eqs. (2.11) and (2.28) and these determine the relic density. The resulting

physics is presumably not dissimilar from that discussed in ref. [33–35]. Another interesting

question is whether electroweak baryogenesis can be realized in the model. The SM fails in

this regard, because the CP violation in the CKM matrix is too small and the electroweak

phase transition cannot be strongly first-order given the LEP bound on the Higgs mass. In

the SO(6)/SO(5) model, the presence of the singlet could cure both of these problems. First,

we have shown that, for 〈η〉 6= 0, the model has new sources of CP violation. Secondly,

the presence of the singlet, as shown in ref. [36], can result in a strongly first-order phase

transition for Higgs masses above the LEP bound. All these issues deserve further analysis.
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A Models based on SO(6)/SO(4)

In the case in which the breaking of the SU(4) is achieved by the VEV of the symmetric

representation, the 10, the global SU(4) is broken down to SO(4). In this case, however, the

nine NGBs parametrizing SU(4)/SO(4) transform as a (3,3) of SO(4) ∼= SU(2)L ×SU(2)R,

which does not contain doublets that can be associated with the SM Higgs.

Another option is to break SU(4) by the VEV of the traceless representation, the 15,

that we denote by Ω and transforms as Ω → UΩU †. When the VEV of Ω takes the form

Ω0 = Diag(1, 1,−1,−1) , (A.1)

the global SU(4) is broken down to SU(2)L × SU(2)R × U(1) ∼= SO(4) × SO(2), delivering

8 NGBs, which transform as (2,2)±2 under the unbroken subgroup. This model has two

Higgs doublets, which gives rise to the following problem. While a single Higgs doublet

automatically guarantees that, after EWSB, the global SO(4) symmetry of the strong

sector is broken down to the custodial SO(3) symmetry that protects the T -parameter
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from receiving large corrections, the presence of two Higgs doublets spoils this property.

The reason is that the second Higgs doublet can get a VEV, breaking the custodial SO(3)

symmetry down to SO(2). To see this explicitly, let us parametrize the NGBs by the

traceless, hermitian matrix

Ω = e
1√
2
iΠΩ/f

Ω0 , ΠΩ =

(

0 Ĥ1 + iĤ2

Ĥ†
1 − iĤ†

2 0

)

, (A.2)

where Ĥi = (Hc
i ,Hi). By an SU(2)L rotation, we can eliminate 3 out of the 4 components

of Ĥ1 and write Ĥ1 = h1. For Ĥ2, we only consider the SO(3)-breaking direction Ĥ2 =

−ih3σ3. For simplicity, we will take the limit h, h3 ≪ f , which allows us to expand eq. (A.2):

Ω ≃





(1 − h2+h2
3

4f2 )1− hh3

2f2 σ3 − i
f
√

2
(h1 + h3σ3)

i
f
√

2
(h1 + h3σ3) −(1 − h2+h2

3

4f2 )1 + hh3

2f2 σ3



 . (A.3)

From the kinetic term of Ω we can read off the SM gauge boson masses:

f2

8
Tr|DµΩ|2 =

g2

8
(h2+h2

3)

[

W µ+W−
µ +

1

2 cos2 θW

(

1− h2h2
3

2f2(h2+h2
3)

)

ZµZµ

]

+· · · , (A.4)

which shows that if h3 gets a VEV, the custodial symmetry is broken and

ρ ≡ m2
W /(m2

Z cos2 θW ) 6= 1. Now, let us choose that the SM top be embedded in

a 6 of SU(4), as in eq. (2.18) (similar results are obtained for the 10 representation). This

implies that the strong sector generates the operator

Tr[Ψ̄q 6pΨqΩ
∗] = −ūL 6puL

hh3

8f2
+ · · · . (A.5)

This coupling can enter in a uL-loop and generate (after EWSB 〈h〉 6= 0) a tadpole for

h3; this forces h3 to get a VEV, breaking the custodial symmetry. This poses a serious

problem for this type of model.

Finally, we can consider the global symmetry breaking SU(4) → SO(4) achieved by

the presence of the VEV of Ω — eq. (A.1) — and Σ — eq. (2.1). In this case there are 9

NGBs transforming as (1,1)⊕ (2,2)⊕ (2,2). These models, however, not only suffer from

the problems discussed above but can also have sizable FCNC, since the Yukawa couplings

can arise from two distinct multiplets, Σ and Ω.

B CP -invariance

To show that CP is a symmetry of the sigma model representing the Higgs sector of

the SO(6)/SO(5) model, we begin by asserting that the Lie algebra of SO(6) admits two

automorphisms, given by

A1 : T a → T a, T â → −T â ,

A2 : T a → −T aT , T â → T âT , (B.1)
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where T a are the generators of the unbroken SO(5) and T â are the broken generators, as

in eqs. (2.3) and (2.4). Recall that an automorphism is a linear transformation among the

generators that preserves the algebra. That the two transformations in eq. (B.1) preserve

the algebra follows from the fact that SO(6)/SO(5) is a symmetric space: There exists a

basis for Lie SO(6) (such as the explicit one given after eqs. (2.3) and (2.4)) such that

[T a, T b] ∼ T c , [T â, T â] ∼ T a , [T â, T a] ∼ T b̂ . (B.2)

It remains only to check that A2, which involves transposition, can be written as a linear

transformation among the generators. This is easily done using the explicit representation

for the generators given after eqs. (2.3) and (2.4). Note also that since our sigma model field

is written as an exponential of the broken generators, Σ ∼ eiΠâT â

, these automorphisms

can also be thought of as the field transformations Π → −Π and Π → ΠT , just as in the

chiral lagrangian for QCD.

How do these two automorphisms give rise to symmetries of the sigma model la-

grangian? To answer this, we note that the general G/H coset sigma model is constructed

in the following way. Firstly, given a coset representative Σ for G/H, we build the Cartan

form for G, Σ−1dΣ, which is of course an element of Lie G. Projecting this onto the sub-

space of broken generators, (Σ−1dΣ)â gives a vielbein corresponding to the natural metric

on G/H. The vielbein is the basic object that we use to build the sigma model. In par-

ticular, the leading two-derivative term in the sigma-model lagrangian is just the natural

metric on G/H, built out of two vielbeine, and pulled back to spacetime. Similarly, the

WZW term (in d = 4) is built out of five vielbeine. Now the automorphisms give rise to

isometries of the natural G/H metric, so any terms in the sigma-model lagrangian built

out of the metric will be symmetric. The WZW term is special in that it is built not out

of the metric per se, but out of the vielbein. Under the automorphism A1 in eq. (B.1), the

vielbein changes sign, and the WZW term also changes sign. So A1 is not a symmetry of the

WZW term. However, when combined with the spacetime parity operation, P0 : x → −x,

the WZW term (which features four derivatives and an epsilon tensor) is invariant.

So we have proven that for a general G/H symmetric space, with the two automor-

phisms in eq. (B.1) 9 the sigma model lagrangian, including the WZW term, will be invari-

ant under two symmetries, corresponding to A2 and A1P0. In the SO(6)/SO(5) model of

EWSB, the combination A1A2P0 corresponds precisely to

h → h , η → −η . (B.3)

This defines the CP symmetry of the Higgs sector, including the WZW term. This is, of

course, in accord with the WZW contribution eq. (3.1) which couples the CP -odd η to the

CP -odd combination FF̃ .
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[31] C. Csáki, J. Heinonen, J. Hubisz and Y. Shirman, Odd decays from even anomalies: gauge

mediation signatures without SUSY, arXiv:0901.2933 [SPIRES].

[32] E. Witten, Global aspects of current algebra, Nucl. Phys. B 223 (1983) 422 [SPIRES].

[33] J. McDonald, Gauge singlet scalars as cold dark matter, Phys. Rev. D 50 (1994) 3637

[hep-ph/0702143] [SPIRES].

[34] J. McDonald, Electroweak baryogenesis and dark matter via a gauge singlet scalar,

Phys. Lett. B 323 (1994) 339 [SPIRES].

[35] H. Davoudiasl, R. Kitano, T. Li and H. Murayama, The new minimal standard model,

Phys. Lett. B 609 (2005) 117 [hep-ph/0405097] [SPIRES].

[36] G.W. Anderson and L.J. Hall, The electroweak phase transition and baryogenesis,

Phys. Rev. D 45 (1992) 2685 [SPIRES].

– 19 –

http://dx.doi.org/10.1140/epjc/s10052-007-0323-6
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=EPHJA,C51,385
http://dx.doi.org/10.1103/PhysRevD.63.075003
http://arxiv.org/abs/hep-ph/0005308
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-PH/0005308
http://dx.doi.org/10.1103/PhysRevLett.95.041801
http://arxiv.org/abs/hep-ph/0502105
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-PH/0502105
http://dx.doi.org/10.1146/annurev.nucl.58.110707.171200
http://arxiv.org/abs/0801.4554
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0801.4554
http://dx.doi.org/10.1016/0550-3213(85)90324-4
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA,B262,439
http://dx.doi.org/10.1016/0003-4916(91)90046-B
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=APNYA,210,323
http://dx.doi.org/10.1016/j.nuclphysb.2003.08.027
http://arxiv.org/abs/hep-ph/0306259
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-PH/0306259
http://dx.doi.org/10.1016/j.physletb.2008.04.046
http://arxiv.org/abs/0803.0497
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0803.0497
http://dx.doi.org/10.1103/PhysRevD.75.115009
http://arxiv.org/abs/hep-ph/0701044
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-PH/0701044
http://dx.doi.org/10.1103/PhysRevD.71.015008
http://arxiv.org/abs/hep-ph/0411213
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-PH/0411213
http://arxiv.org/abs/0901.2933
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0901.2933
http://dx.doi.org/10.1016/0550-3213(83)90063-9
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA,B223,422
http://dx.doi.org/10.1103/PhysRevD.50.3637
http://arxiv.org/abs/hep-ph/0702143
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-PH/0702143
http://dx.doi.org/10.1016/0370-2693(94)91229-7
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA,B323,339
http://dx.doi.org/10.1016/j.physletb.2005.01.026
http://arxiv.org/abs/hep-ph/0405097
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-PH/0405097
http://dx.doi.org/10.1103/PhysRevD.45.2685
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA,D45,2685

	Introduction
	The SO(6)/SO(5) composite Higgs model
	Couplings to SM fermions
	One-loop effective potential
	Higgs phenomenology

	Anomalies, the Wess-Zumino-Witten term and CP
	Outlook
	Models based on SO(6)/SO(4)
	CP-invariance

